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ABSTRACT 
Boolean Satisfiability is probably the most studied of 

combinatorial optimization/search problems. Significant effort has 
been devoted to trying to provide practical solutions to this 
problem for problem instances encountered in a range of 
applications in Electronic Design Automation (EDA), as well as 
in Artificial Intelligence (AI). This study has culminated in the 
development of several SAT packages, both proprietary and in the 
public domain (e.g. GRASP, SATO) which find significant use in 
both research and industry. Most existing complete solvers are 
variants of the Davis-Putnam (DP) search algorithm. In this paper 
we describe the development of a new complete solver, Chaff, 
which achieves significant performance gains through careful 
engineering of all aspects of the search – especially a particularly 
efficient implementation of Boolean constraint propagation (BCP) 
and a novel low overhead decision strategy. Chaff has been able 
to obtain one to two orders of magnitude performance 
improvement on difficult SAT benchmarks in comparison with 
other solvers (DP or otherwise), including GRASP and SATO.  
Categories and Subject Descriptors 
J6 [Computer-Aided Engineering]: Computer-Aided Design. 

General Terms 
Algorithms, Verification. 

Keywords 
Boolean satisfiability, design verification. 

1. Introduction 
The Boolean Satisfiability (SAT) problem consists of 

determining a satisfying variable assignment, V, for a Boolean 
function, f, or determining that no such V exists.  SAT is one of 
the central NP-complete problems. In addition, SAT lies at the 
core of many practical application domains including EDA (e.g. 
automatic test generation [10] and logic synthesis [6]) and AI 
(e.g. automatic theorem proving).  As a result, the subject of 
practical SAT solvers has received considerable research 
attention, and numerous solver algorithms have been proposed 
and implemented. 

Many publicly available SAT solvers (e.g. GRASP [8], 
POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been 

developed, most employing some combination of two main 
strategies: the Davis-Putnam (DP) backtrack search and heuristic 
local search.  Heuristic local search techniques are not guaranteed 
to be complete (i.e. they are not guaranteed to find a satisfying 
assignment if one exists or prove unsatisfiability); as a result, 
complete SAT solvers (including ours) are based almost 
exclusively on the DP search algorithm. 

1.1 Problem Specification 
Most solvers operate on problems for which f is specified in 

conjunctive normal form (CNF).  This form consists of the logical 
AND of one or more clauses, which consist of the logical OR of 
one or more literals.  The literal comprises the fundamental 
logical unit in the problem, being merely an instance of a variable 
or its complement.  (In this paper, complement is represented by 
¬.)  All Boolean functions can be described in the CNF format.  
The advantage of CNF is that in this form, for f to be satisfied 
(sat), each individual clause must be sat. 

1.2 Basic Davis-Putnam Backtrack Search 
We start with a quick review of the basic Davis-Putnam 

backtrack search. This is described in the following pseudo-code 
fragment: 
 
while (true) { 
  if (!decide()) // if no unassigned vars 
    return(satisifiable); 
  while (!bcp()) {  
    if (!resolveConflict()) 

return(not satisfiable); 
  } 
} 
 
bool resolveConflict() { 
  d = most recent decision not ‘tried both 
ways’; 
 
  if (d == NULL) // no such d was found 
    return false; 
       
  flip the value of d; 
  mark d as tried both ways; 
  undo any invalidated implications; 
  return true; 
} 
 

The operation of decide() is to select a variable that is not 
currently assigned, and give it a value.  This variable assignment 
is referred to as a decision.  As each new decision is made, a 
record of that decision is pushed onto the decision stack. This 
function will return false if no unassigned variables remain and 
true otherwise. 

The operation of bcp(), which carries out Boolean 
Constraint Propagation (BCP), is to identify any variable 
assignments required by the current variable state to satisfy f.  
Recall that every clause must be sat, for f to be sat. Therefore, if a 
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clause consists of only literals with value 0 and one unassigned 
literal, then that unassigned literal must take on a value of 1 to 
make f sat.  Clauses in this state are said to be unit, and this rule 
is referred to as the unit clause rule. The necessary variable 
assignment associated with giving the unassigned literal a value of 
1 is referred to as an implication.  In general, BCP therefore 
consists of the identification of unit clauses and the creation of 
the associated implications.  In the pseudo-code from above, 
bcp() carries out BCP transitively until either there are no more 
implications (in which case it returns true) or a conflict is 
produced (in which case it returns false).  A conflict occurs when 
implications for setting the same variable to both 1 and 0 are 
produced. 

At the time a decision is made, some variable state exists and 
is represented by the decision stack. Any implication generated 
following a new decision is directly triggered by that decision, but 
predicated on the entire prior variable state.  By associating each 
implication with the triggering decision, this dependency can be 
compactly recorded in the form of an integer tag, referred to as the 
decision level (DL).  For the basic DP search, the DL is 
equivalent to the height of the decision stack at the time the 
implication is generated. 

To explain what handleConflict() does, we note that 
we can invalidate all the implications generated on the most 
recent decision level simply by flipping the value of the most 
recent decision assignment.  Therefore, to deal with a conflict, we 
can just undo all those implications, flip the value of the decision 
assignment, and allow BCP to then proceed as normal.  If both 
values have already been tried for this decision, then we backtrack 
through the decision stack until we encounter a decision that has 
not been tried both ways, and proceed from there in the manner 
described above.  Clearly, in backtracking through the decision 
stack, we invalidate any implications with decision levels equal to 
or greater than the decision level to which we backtracked.  If no 
decision can be found which has not been tried both ways, that 
indicates that f is not satisfiable.  

Thus far we have focused on the overall structure of the basic 
DP search algorithm. The following sections describe features 
specific to Chaff. 

2. Optimized BCP 
In practice, for most SAT problems, a major potion (greater 

than 90% in most cases) of the solvers’ run time is spent in the 
BCP process.  Therefore, an efficient BCP engine is key to any 
SAT solver. 

To restate the semantics of the BCP operation: Given a 
formula and set of assignments with DLs, deduce any necessary 
assignments and their DLs, and continue this process transitively 
by adding the necessary assignments to the initial set. Necessary 
assignments are determined exclusively by repeated applications 
of the unit clause rule. Stop when no more necessary assignments 
can be deduced, or when a conflict is identified. 

For the purposes of this discussion, we say that a clause is 
implied iif all but one of its literals is assigned to zero. So, to 
implement BCP efficiently, we wish to find a way to quickly visit 
all clauses that become newly implied by a single addition to a set 
of assignments.  

The most intuitive way to do this is to simply look at every 
clause in the database clauses that contain a literal that the current 
assignment sets to 0. In effect, we would keep a counter for each 
clause of how many value 0 literals are in the clause, and modify 

the counter every time a literal in the clause is set to 0. However, 
if the clause has N literals, there is really no reason that we need 
to visit it when 1, 2, 3, 4, … , N-1 literals are set to zero. We 
would like to only visit it when the “number of zero literals” 
counter goes from N-2 to N-1.  

As an approximation to this goal, we can pick any two 
literals not assigned to 0 in each clause to watch at any given 
time. Thus, we can guarantee that until one of those two literals is 
assigned to 0, there cannot be more than N-2 literals in the clause 
assigned to zero, that is, the clause is not implied. Now, we need 
only visit each clause when one of its two watched literals is 
assigned to zero. When we visit each clause, one of two 
conditions must hold: 

 
(1) The clause is not implied, and thus at least 2 literals are not 

assigned to zero, including the other currently watched 
literal. This means at least one non-watched literal is not 
assigned to zero. We choose this literal to replace the one 
just assigned to zero. Thus, we maintain the property that the 
two watched literals are not assigned to 0. 

(2) The clause is implied. Follow the procedure for visiting an 
implied clause (usually, this will generate a new implication, 
unless the unless the clause is already sat). One should take 
note that the implied variable must always be the other 
watched literal, since, by definition, the clause only has one 
literal not assigned to zero, and one of the two watched 
literals is now assigned to zero.  

 
It is invariant that in any state where a clause can become 

newly implied, both watched literals are not assigned to 0. A key 
benefit of the two literal watching scheme is that at the time of 
backtracking, there is no need to modify the watched literals in 
the clause database. Therefore, unassigning a variable can be done 
in constant time. Further, reassigning a variable that has been 
recently assigned and unassigned will tend to be faster than the 
first time it was assigned. This is true because the variable may 
only be watched in a small subset of the clauses in which was 
previously watched. This significantly reduces the total number of 
memory accesses, which, exacerbated by the high data cache miss 
rate is the main bottleneck for most SAT implementations. Figure 
1 illustrates this technique. It shows how the watched literals for a 
single clause change under a series of assignments and 
unassignments. Note that the initial choice of watched literals is 
arbitrary, and that for the purposes of this example, the exact 
details of how the sequence of assignments and unassignments is 
being generated is irrelevant.  

One of the SATO[13] BCP schemes has some similarities to 
this one in the sense that it also watches two literals (called the 
head and tail literals by its authors) to detect unit clauses and 
conflicts. However, our algorithm is different from SATO’s in 
that we do not require a fixed direction of motion for the watched 
literals while in SATO, the head literal can only move towards tail 
literal and vice versa. Therefore, in SATO, unassignment has the 
same complexity as assignment. 

3. Variable State Independent Decaying Sum 
(VSIDS) Decision Heuristic 

Decision assignment consists of the determination of which 
new variable and state should be selected each time decide() is 
called.  A lack of clear statistical evidence supporting one 
decision strategy over others has made it difficult to determine 
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what makes a good decision strategy and what makes a bad one.  
To explain this further, we briefly review some common 
strategies. For a more comprehensive review of the effect of 
decision strategies on SAT solver performance, see [7] by Silva. 

The simplest possible strategy is to simply select the next 
decision randomly from among the unassigned variables, an 
approach commonly denoted as RAND.  At the other extreme, 
one can employ a heuristic involving the maximization of some 
moderately complex function of the current variable state and the 
clause database (e.g. BOHM and MOMs heuristics).   

One of the most popular strategies, which falls somewhere in 
the middle of this spectrum, is the dynamic largest individual sum 
(DLIS) heuristic, in which one selects the literal that appears most 
frequently in unresolved clauses.  Variations on this strategy (e.g. 
RDLIS and DLCS) are also possible.  Other slightly more 
sophisticated heuristics (e.g. JW-OS and JE-TS) have been 
developed as well, and the reader is referred again to [7] for a full 
description of these other methods. 

Clearly, with so many strategies available, it is important to 
understand how best to evaluate them.  One can consider, for 
instance, the number of decisions performed by the solver when 
processing a given problem.  Since this statistic has the feel of a 
good metric for analyzing decision strategies ─ fewer decisions 
ought to mean smarter decisions were made, the reasoning goes ─ 
it has been used almost exclusively as the comparator in the scant 
literature on the subject.  However, not all decisions yield an 
equal number of BCP operations, and as a result, a shorter 
sequence of decisions may actually lead to more BCP operations 
than a longer sequence of decisions, begging the question: what 
does the number of decisions really tell us?  The same argument 
applies to statistics involving conflicts.  Furthermore, it is also 
important to recognize that not all decision strategies have the 
same computational overhead, and as a result, the “best” decision 
strategy ─ even if that determination is based on a good 
combination of the available computation statistics ─ may 
actually be the slowest if the overhead is significant enough.  All 
we really want to know is which strategy is fastest, regardless of 
the computation statistics.  No clear answer exists in the literature, 
though based on [7] DLIS would appear to be a solid all-around 
strategy.  However, even RAND performs well on the problems 
described in that paper.  While developing our solver, we 
implemented and tested all of the strategies outlined above, and 
found that we could design a considerably better strategy for the 
range of problems on which we tested our solver.  This strategy, 
termed Variable State Independent Decaying Sum (VSIDS) is 
described as follows: 
 
(1) Each variable in each polarity has a counter, initialized to 0. 
(2) When a clause is added to the database, the counter 

associated with each literal in the clause is incremented.  
(3) The (unassigned) variable and polarity with the highest 

counter is chosen at each decision. 
(4) Ties are broken randomly by default, although this is 

configurable 
(5) Periodically, all the counters are divided by a constant. 
 

Also, in order to choose the variable with the highest counter 
value even more quickly at decision time, a list of the unassigned 
variables sorted by counter value is maintained during BCP and 
conflict analysis (using an STL set in the current implementation).  

Overall, this strategy can be viewed as attempting to satisfy 
the conflict clauses but particularly attempting to satisfy recent 
conflict clauses.  Since difficult problems generate many conflicts 
(and therefore many conflict clauses), the conflict clauses 
dominate the problem in terms of literal count, so this approach 
distinguishes itself primarily in how the low pass filtering of the 
statistics (indicated by step (5)) favors the information generated 
by recent conflict clauses. We believe this is valuable because it is 
the conflict clauses that primarily drive the search process on 
difficult problems.  And so this decision strategy can be viewed as 
directly coupling that driving force to the decision process.  

Of course, another key property of this strategy is that since 
it is independent of the variable state (except insofar as we must 
choose an unassigned variable) it has very low overhead, since the 
statistics are only updated when there is a conflict, and 
correspondingly, a new conflict clause. Even so, decision related 
computation is still accounts for ~10% of the run-time on some 
difficult instances. (Conflict analysis is also ~10% of the run-time, 
with the remaining ~80% of the time spent in BCP.)  Ultimately, 
employing this strategy dramatically (i.e. an order of magnitude) 
improved performance on all the most difficult problems without 
hurting performance on any of the simpler problems, which we 
viewed as the true metric of its success. 

4. Other Features 
Chaff employs a conflict resolution scheme that is 

philosophically very similar to GRASP, employing the same type 
of conflict analysis, conflict clause addition, and UIP-
identification.  There are some differences that the authors believe 
have dramatically enhanced the simplicity and elegance of the 
implementation, but due to space limitations, we will not delve 
into that subject here. 

4.1 Clause Deletion 
Like many other solvers, Chaff supports the deletion of 

added conflict clauses to avoid a memory explosion.  However, 
since the method for doing so in Chaff differs somewhat from the 
standard method, we briefly describe it here. Essentially, Chaff 
uses scheduled lazy clause deletion. When each clause is added, it 
is examined to determine at what point in the future, if any, the 
clause should be deleted. The metric used is relevance, such that 
when more than N (where N is typically 100-200) literals in the 
clause will become unassigned for the first time, the clause will be 
marked as deleted. The actual memory associated with deleted 
clauses is recovered with an infrequent monolithic database 
compaction step. 

4.2 Restarts 
Chaff also employs a feature referred to as restarts.  Restarts 

in general consist of a halt in the solution process, and a restart of 
the analysis, with some of the information gained from the 
previous analysis included in the new one.  As implemented in 
Chaff, a restart consists of clearing the state of all the variables 
(including all the decisions) then proceeding as normal.  As a 
result, any still-relevant clauses added to the clause database at 
some time prior to the restart are still present after the restart.  It is 
for this reason that the solver will not simply repeat the previous 
analysis following a restart.  In addition, one can add a certain 
amount of transient randomness to the decision procedure to aid 
in the selection of a new search path.  Such randomness is 
typically small, and lasts only a few decisions.  Of course, the 
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frequency of restarts and the characteristics of the transient 
randomness are configurable in the final implementation. It 
should be noted that restarts impact the completeness of the 
algorithm. If all clauses were kept, however, the algorithm would 
still be complete, so completeness could be maintained by 
increasing the relevance parameter N slowly with time. GRASP 
uses a similar strategy to maintain completeness by extending the 
restart period with each restart (Chaff also does this by default, 
since it generally improves performance). 

Note that Chaff’s restarts differ from those employed by, for 
instance, GRASP in that they do not affect the current decision 
statistics. They mainly are intended to provide a chance to change 
early decisions in view of the current problem state, including all 
added clauses and the current search path. With default settings, 
Chaff may restart in this sense thousands of times on a hard 
instance (sat or unsat), although similar results can often (or at 
least sometimes) be achieved with restarts completely disabled.   

5. Experimental Results 
On smaller examples with relatively inconsequential run 

times, Chaff is comparable to any other solver. However, on 
larger examples where other solvers struggle or give up, Chaff 
dominates by completing in up to one to two orders of magnitude 
less time than the best public domain solvers.  

Chaff has been run on and compared with other solvers on 
almost a thousand benchmark formulas. Obviously, it is 
impossible to provide complete results for each individual 
benchmark. Instead, we will present summary results for each 
class of benchmarks. Comparisons were done with GRASP, as 
well as SATO. GRASP provides for a range of parameters that 
can be individually tuned. Two different recommended sets of 
parameters were used (GRASP(A) and GRASP(B)). For SATO, 
the default settings as well as –g100 (which restricts the size of 
added clauses to be 100 literals as opposed to the default of 20) 
were used. Chaff was used with the default cherry.smj 
configuration in all cases, except for the dimacs pret* instances, 
which required a single parameter change to the decision strategy. 
All experiments were done on a 4 CPU 336 Mhz UltraSparc II 
Solaris machine with 4GB main memory. Memory usage was 
typically 50-150MB depending on the run time of each instance. 

Table 1 provides the summary results for the DIMACs [4] 
benchmark suite. Each row is a set of individual benchmarks 
grouped by category. For GRASP, both options resulted in several 
benchmarks aborting after 100secs, which was sufficient for both 
SATO and Chaff to complete all instances. On examples that the 
others also complete, Chaff is comparable to the others, with 
some superiority on the hole and par16 classes, which seem to be 
among the more difficult ones. Overall, most of the DIMACs 
benchmarks are now considered easy, as there are a variety of 
solvers that excel on various subsets of them. Note that some of 
the DIMACS benchmarks, such as the large 3-sat instance sets ‘f’ 
and ‘g’, as well as the par32 set were not used, since none of the 
solvers considered here performs well on these benchmark 
classes. 

The next set of experiments was done using the CMU 
Benchmark Suite [11]. This consists of hard problems, satisfiable 
and unsatisfiable, arising from verification of microprocessors (for 
a detailed description of these benchmarks and Chaff’s 
performance on them, see [12]). It is here that Chaff’s prowess 
begins to show more clearly. For SSS.1.0, Chaff is about an order 
of magnitude faster than the others and can complete all the 

examples within 100secs. Both GRASP and SATO abort the 5 
hard unsat instances in this set, which are known to take both 
GRASP and SATO significantly longer to complete than the sat 
instances. Results on using randomized restart techniques with the 
newest version of GRASP have been reported on a subset of these 
examples in [1]. We have been unable to reproduce all of those 
results, due to the unavailability of the necessary configuration 
profiles for GRASP (again, see [12]). However, comparing our 
experiments with the reported results shows the superiority of 
Chaff, even given a generous margin for the differences in the 
testing environments. For SSS.1.0.a Chaff completed all 9 of the 
benchmarks – SATO and GRASP could do only two. For SSS-
SAT.1.0, SATO aborted 32 of the first 41 instances when we 
decided to stop running any further instances for lack of hope and 
limited compute cycles. GRASP was not competitive at all on this 
set. Chaff again completed all 100 in less than 1000secs, within a 
100sec limit for each instance. In FVP-UNSAT.1.0 both GRASP 
and SATO could only complete one easy example and aborted the 
next two. Chaff completed all 4. Finally for VLIW-SAT.1.0 both 
SATO and GRASP aborted the first 19 of twenty instances tried. 
Chaff finished all 100 in less than 10000 seconds total. 

For many of these benchmarks, only incomplete solvers (not 
considered here) can find solutions in time comparable to Chaff, 
and for the harder unsatisfiable instances in these benchmarks, no 
solver the authors were able to run was within 10x of Chaff’s 
performance, which prohibited running them on the harder 
problems. When enough information is released to run GRASP 
and locally reproduce results as in [1], these results will be 
revisited, although the results given would indicate that Chaff is 
still a full 2 orders of magnitude faster on the hard unsat 
instances, and at least 1 order of magnitude faster on the 
satisfiable instances. 

7. Conclusions 
This paper describes a new SAT solver, Chaff, which has 

been shown to be at least an order of magnitude (and in several 
cases, two orders of magnitude) faster than existing public domain 
SAT solvers on difficult problems from the EDA domain. This 
speedup is not the result of sophisticated learning strategies for 
pruning the search space, but rather, of efficient engineering of 
the key steps involved in the basic search algorithm. Specifically, 
this speedup is derived from: 

• a highly optimized BCP algorithm, and 

• a decision strategy highly optimized for speed, as well 
as focused on recently added clauses. 
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Literal with value 0 

Literal with value 1 

Literal with value X (unassigned) 

Figure 1: BCP using two watched literals  
 
 
All times are in seconds. 

I = total number of instances in set 

A = number of instances aborted. If a number n in () follows 
this, then only n instances in the set were attempted due to 
frequency of aborts. 

Time = total user time for search, including aborted instances 
* = SATO was run with (B) for this set. 

# = GRASP was run with (B) for this set. 

^ = Chaff was run with (B) for this set. 

All solvers run with (A) options unless marked. Shown result is 
for whichever set of options was better for each set. 
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GRASP options (A):  

 +T100 +B10000000 +C10000000 +S10000 

 +V0   +g40 +rt4 +dMSMM +dr5 

GRASP options (B):  

  +T100  +B10000000 +C10000000 +S10000 

  +g20 +rt4 +dDLIS 

SATO options (A): -g100 

SATO options (B): [default] 

Chaff options (A): cherry.smj config 

Chaff options (B): cherry.smj config 

 plus maxLitsForConfDriven = 10 

 
Table 1  GRASP   SATO   Chaff   

 I        
       
Time A 

    
Time A 

    
Time A 

ii16 10 241.1# 1 1.3 0 6.2 0 

ii32 17 2.3# 0 2.1* 0 0.6 0 

ii8 14 1.2 0 0.2 0 0.1 0 

aim200 24 6.5 0 0.3 0 0.3 0 

aim100 24 0.6# 0 0.1 0 0.1 0 

pret 8 5.9# 0 0 0 0.7^ 0 

Par8 10 0.1# 0 0.1 0 0.1 0 

ssa 8 2.7# 0 4.2 0 0.3 0 

jnh 50 5.7# 0 0.7 0 0.6 0 

dubois 13 0.3 0 0.1 0 0.2 0 

hole 5 221.8# 2 99.9* 0 97.6 0 

par16 10 845.9# 7 256* 0 42.6 0 

Abort timeout was 100s for these sets. 

 
Table 2  GRASP  SATO  Chaff  

 I Time A Time A Time A 

SSS 1.0 48 770 5& 16795 5 48 0 

SSS 1.0a 8 6031 6 790 6& 20 0 

SSS-SAT 1.0 100   33708 32 (41) 457 0 

FVP-UNSAT 1.0 4 2018 2 (3) 2007 2 (3) 735 0 

VLIW-SAT 1.0 100  19 (20)  19 (20) 3143 0 

Abort timeout was 1000s for these sets, except for &’ed sets 
where it was 100s. 
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